LATERAL UNI SURGICAL TECHNIC:

NAVIGATION

F-x Gunepin

Had Eric Tabarly been better with computer assistance?

Am I a better surgeon with navigation?

WHAT NAVIGATION?

- Passive, semi-active and active
- Depending on the level of information exchanged between the computer and the surgeon
- Anatomical functional or mixed:
- Depending on the parameters used

• The future

Simulation:
Virtual surgery
Mobility sectors
Wear and tear

Immersive virtual reality enables technical skill acquisition for scrub nurses in complex revision total knee arthroplasty

Thomas C. Edwards^{1,2} · Arjun Patel^{1,2} · Bartosz Szyszka¹ · Alexander W. Coombs¹ · Alexander D. Liddle¹ · Rakesh Kucheria² · Justin P. Cobb¹ · Kartik Logishetty^{1,2}

THE PRECISION INCREASES WITH THE QUALITY OF THE BONE/COMPUTER REGISTRATION

• Basic:

 \odot Using visible rigid bodies

 \odot Quantify the position of one relative to the other

Intermediate:

 ○ Statistical deformable model whose precision increases with the number of points palpated → Bone morphing

• High:

 Integration of pre-operative images (CT or MRI) intra-operative registration by palpation of landmarks:

Specific (pre-operative marking)

A CRUCIAL ELEMENT: THE SIGNAL

- Specifications:
 - \odot Eliminate parasites and interference
 - \circ Electric scalpel
 - \circ Anesthetic monitoring
 - $\circ\,$ Avoid cable
- Today passive
 - \circ Optical \rightarrow visible single-use bodies
- Tomorrow active
 - Bluetooth
 - $\circ \mbox{ other }$
 - \odot No random mobility
 - \circ Bone anchor
- Others...

WHAT NAVIGATION FOR WHAT TO DO?

• Passive

 O You choose everything, the system informs you of your position (≈ G.P.S)

Semi Active

 The system help you go wherever you want (≈ G.P.S with route calculation)

• Active

• The system can perform gestures = robotic surgery

TODAY

- Column with infrared sensors fixed in the bone
- Without imaging \rightarrow bone morphing
- Simulation:

 \odot Axes, ligament tension, range of motion

PRE-OPERATIVE ASSESSMENT++

Clinical assessment

 \odot Mobility, stability, reducibility

- Imaging:
 - Pangonometry
 - Knees facing and profile supported
 Schuss
 - Stress clichés
 - ➔ Slope measurement++

"FUNCTIONAL" TARGET

- Compensate for cartilage loss
- Retensioning of the lateral ligament plane

INSTALLATION

Eur J Orthop Surg Traumatol. 2018 Jul;28(5):793-797. doi: 10.1007/s00590-017-2107-5. Epub 2017 Dec 26.

Minimally invasive unicompartmental knee arthroplasty.

Jenny JY1.

PUC naviguée et voie d'abord réduite (6 cm)

FIRST STEP

Acquisition of sensor positions Bone Morphing Acquisition of axes

Second step: select the target

Third Step \rightarrow Do what we plane

Removal of osteophytes

Release of soft tissues

Complete the roadmap

FOURTH STEP: BONE CUTTING

• For the Tibia

- \odot According to planning
- Height measurement and flexion-extension tests with the 9 mm thick trial implant
- $\circ \, \text{Space control}$
 - By navigation
 - And dynamic observation
- Skate stable in flexion to validate the slope

Femur

- Distal cut in extension

 Tibial reference
 And navigation control
- Flexural camber
- → This is the delicate moment...
- ➔ Navigation control+++

Tries

→ then choice of definitive implants

Surgeon is guided at each step and validates what he has done

J Arthroplasty. 2017 May;32(5):1443-1452. doi: 10.1016/j.arth.2016.11.036. Epub 2016 Nov 29.

Determination of the Accuracy of Navigated Kinematic Unicompartmental Knee Arthroplasty: A 2-Year Follow-Up.

Grant AL¹, Doma KD², Hazratwala K².

Greater precision in installation No significant difference otherwise

J Knee Surg. 2019 Nov 4. doi: 10.1055/s-0039-1700494. [Epub ahead of print]

Computer-Navigated versus Conventional Total Knee Arthroplasty: A Meta-Analysis of Functional Outcomes from Level I and II Randomized Controlled Trials.

Chin BZ¹, Seck VMH¹, Syn NL¹, Wee IJY¹, Tan SSH¹, O'Neill GK¹.

The present meta-analysis suggests limited superiority of navigated TKA over its conventional counterpart, in terms improvement in functional outcomes at long-term follow-up

CONCLUSION

- Navigation does not replace a complete clinical and paraclinical assessment
- Allows you to clarify surgical sensations
- Better surgeon ?

But improves the precision of implant placement

➔ Do not add the use of complex ancillaries to a delicate surgery so if you choose navigation use it in your daily practice

